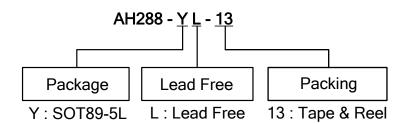


#### **Features**

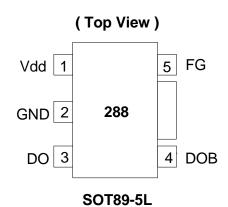

- On chip Hall sensor
- Rotor-locked shutdown
- · Automatically restart
- Frequency generator (FG) output
- Built-in Zener protection for output driver
- Operating voltage: 3.8V~28V
- Output current: I<sub>O(AVE)</sub> = 400mA
- Lead Free Package: SOT89-5L
- Lead Free Finish/RoHS Compliant (Note 1)

#### **General Description**

AH288 is a monolithic fan motor controller with Hall sensor's capability. It contains two complementary open-drain transistors as motor coil drivers, automatic lock current shutdown, and recovery protections. Additional, frequency generator (FG) output is for speed detection relatively.

Rotor-lock shutdown detection circuit turns off the output driver when the rotor is blocked to avoid coil overheat. Then, the automatic recovery circuit will restart the motor. These protected actions are repeated and periodic during the blocked period. Until the blocking is removed, the motor recovers and runs normally.

### **Ordering Information**

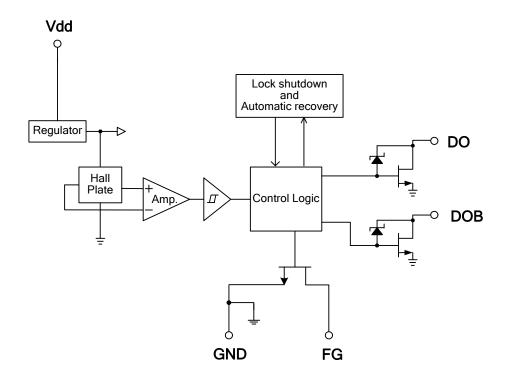



|    |             | Package | Packaging | 13" Tape         | and Reel           |  |  |
|----|-------------|---------|-----------|------------------|--------------------|--|--|
|    | Device      | Code    | (Note 2)  | Quantity         | Part Number Suffix |  |  |
| Pb | AH288-YL-13 | Υ       | SOT89-5L  | 2500/Tape & Reel | -13                |  |  |

Notes:

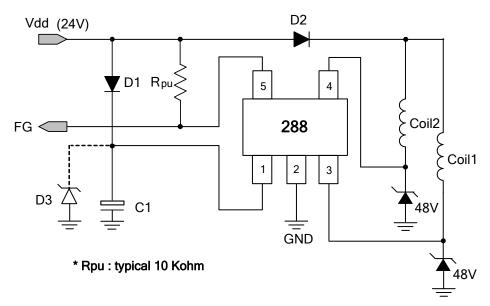
- 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.
- 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at
- Reverse taping as shown on Diodes Inc. Surface Mount (SMD) Packaging document AP02007, which can be found on our website http://www.diodes.com/datasheets/ap02007.pdf.

### **Pin Assignments**






## **Pin Descriptions**

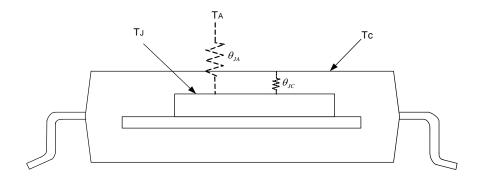

| Pin Name | Pin No. | Description          |  |  |  |
|----------|---------|----------------------|--|--|--|
| Vdd      | 1       | Input power          |  |  |  |
| GND      | 2       | Ground               |  |  |  |
| DO       | 3       | Output pin           |  |  |  |
| DOB      | 4       | Output pin           |  |  |  |
| FG       | 5       | Frequency generation |  |  |  |

## **Block Diagram**





## **Typical Application Circuit**




Notes: 4. The optional Capacitor C1 and Diode D3 are for power stabilization. C1 is recommended to be E-Cap., luF/25V; D3 is recommended to be Zener Diode, Vz =27V. Which C1 and D3 value need to be fine tuned to optimize design for different coils and power suppliers.

#### 24V DC Brush-less Fan with FG output function

### Absolute Maximum Ratings (TA = 25°C)

| Symbol               | Parameter                    | Rating    | Unit |  |
|----------------------|------------------------------|-----------|------|--|
| Vdd                  | Supply Voltage               | 30        | V    |  |
| I <sub>O(AVE)</sub>  | Output Current               | 400       | mA   |  |
| I <sub>O(PEAK)</sub> | Output Gurrent               | 700       |      |  |
| $P_D$                | Power Dissipation            | 800       | mW   |  |
| T <sub>OP</sub>      | Operating Temperature        | -40 ~ 100 | Ô    |  |
| T <sub>ST</sub>      | Storage Temperature          | -55 ~ 150 | °C   |  |
| T <sub>J</sub>       | Maximum Junction Temperature | 150       | °C   |  |



Notes: 5.  $heta_{J\!A}$  should be confirmed with what heat sink thermal resistance. If no heat sink contacting,  $heta_{J\!A}$  is almost the same as  $heta_{J\!C}$  .



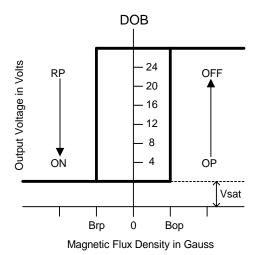
### Electrical Characteristics (TA = 25 °C, Vdd = 24V, unless otherwise specified)

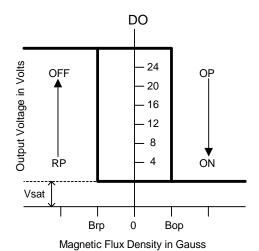
| Symbol               | Parameter                              | Conditions             | Min | Тур.  | Max | Unit |  |
|----------------------|----------------------------------------|------------------------|-----|-------|-----|------|--|
| $V_{dd}$             | Supply Voltage                         | Operating              | 3.8 | -     | 28* | V    |  |
| I <sub>CC</sub>      | Supply Current                         | Operating              | -   | 2     | 4   | mA   |  |
| I <sub>OFF</sub>     | Output Leakage Current                 | V <sub>OUT</sub> = 24V | -   | < 0.1 | 10  | μΑ   |  |
| T <sub>LRP-ON</sub>  | Locked Protection On                   |                        | 0.4 | 0.46  | 0.6 | Sec  |  |
| $T_{LRP\text{-}OFF}$ | Locked Protection Off                  |                        | 2.4 | 2.76  | 3.6 | Sec  |  |
| V                    | Output Saturation Voltage              | I <sub>O</sub> = 200mA | -   | 450   | 700 | mV l |  |
| $V_{OUT(SAT)}$       | Calput Cataration Voltage              | I <sub>O</sub> = 300mA | -   | 680   | 800 |      |  |
| R <sub>DS(ON)</sub>  | Output On Resistance                   | I <sub>O</sub> = 200mA | -   | 2.25  | 3.5 | ohm  |  |
| V <sub>OL</sub>      | FG Output Vds                          | I <sub>O</sub> = 10mA  | -   | 0.3   | 0.5 | V    |  |
| Vz                   | Output Zener-breakdown Voltage         |                        | 42  | 55    | 65  | V    |  |
| $\theta_{JA}$        | Thermal Resistance Junction-to-Ambient | SOT89-5L               |     | 156   |     | °C/W |  |

Notes: 6. Please watch the current limit issue when the operation voltage is over 26.4V, because of the different efficiency in the coil.

#### **Truth Table**

| IN- | IN+ | СТ | OUT1 | OUT2 | FG | Mode                        |
|-----|-----|----|------|------|----|-----------------------------|
| Н   | L   | L  | Н    | L    | Н  | Rotating                    |
| L   | Н   | L  | L    | Н    | L  | Rotating                    |
| -   | -   | Н  | off  | off  | -  | Lockup protection activated |

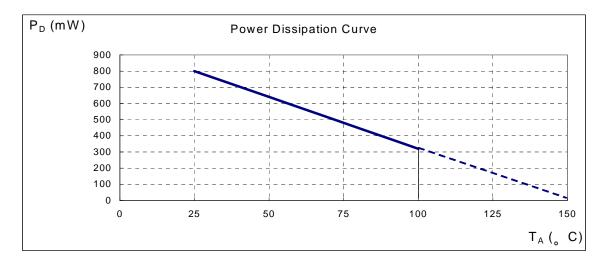

### Magnetic Characteristics (TA = 25 °C, Vdd = 24V, unless otherwise specified)


(1mT=10 Gauss)

| Symbol | Characteristics | Min | Тур. | Max | Unit  |
|--------|-----------------|-----|------|-----|-------|
| Вор    | Operate Point   | 10  | 30   | 60  | Gauss |
| Brp    | Release Point   | -60 | -30  | -10 | Gauss |
| Bhy    | Bhy Hysteresis  |     | 60   | -   | Gauss |



# **Operating Characteristics**








### Performance Characteristics (SOT89-5L)

| Ta (°C)             | 25  | 50  | 60  | 70  | 75  | 80  | 85  | 90  | 95  | 100 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| P <sub>D</sub> (mW) | 800 | 640 | 576 | 512 | 480 | 448 | 416 | 384 | 352 | 320 |
| TA (°C)             | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 |
| P <sub>D</sub> (mW) | 288 | 256 | 224 | 192 | 160 | 128 | 96  | 64  | 32  | 0   |



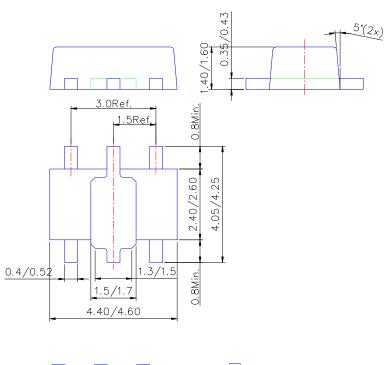
# **Marking Information**

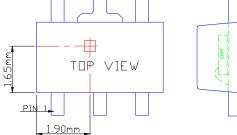


288 Y M X

1 2 3

SOT89-5L


Y: Year: 0-9 M: Month: A~L


 $\overline{\underline{X}}$ : Internal code a~z: Lead Free



# Package Information (All Dimensions in mm)

#### (1) Package type: SOT89-5L





**Sensor Location** 

#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

 $Diodes\ Incorporated\ products\ are\ not\ authorized\ for\ use\ as\ critical\ components\ in\ life\ support\ devices\ or\ systems\ without\ the\ expressed\ written\ approval\ of\ the\ President\ of\ Diodes\ Incorporated.$